narma10.py

###########################################################
# a 10th order NARMA system identification task
# with additional squared state updates
#
# see Jaeger H. (2003), "Adaptive nonlinear system
# identification with echo state networks."
#
# 2007, Georg Holzmann
###########################################################

from numpy import *
import pylab as P
import sys
sys.path.append("../")
from aureservoir import *
import errorcalc


###########################################################
# FUNCTIONS

def setup_STD_ESN():
        """ setup ESN like in Jaegers paper,
        without squared state updates
        """
        net = DoubleESN()
        net.setSize(100)
        net.setInputs(2)
        net.setOutputs(1)
        net.setInitParam( CONNECTIVITY, 0.05 )
        net.setInitParam( ALPHA, 0.8 )
        net.setInitParam( IN_CONNECTIVITY, 1. )
        net.setInitParam( IN_SCALE, 0.1 )
        net.setInitParam( FB_CONNECTIVITY, 0. )
        net.setInitParam( FB_SCALE, 0. )
        net.setReservoirAct( ACT_TANH )
        net.setOutputAct( ACT_LINEAR )
        net.setSimAlgorithm( SIM_STD )
        net.setTrainAlgorithm( TRAIN_PI )
        trainnoise = 0.0001
        testnoise = 0.
        net.init()
        return net, trainnoise, testnoise

def setup_SQUARE_ESN():
        """ setup ESN like in Jaegers paper with squared state updates
        """
        net = DoubleESN()
        net.setSize(100)
        net.setInputs(2)
        net.setOutputs(1)
        net.setInitParam( CONNECTIVITY, 0.05 )
        net.setInitParam( ALPHA, 0.8 )
        net.setInitParam( IN_CONNECTIVITY, 1. )
        net.setInitParam( IN_SCALE, 0.1 )
        net.setInitParam( FB_CONNECTIVITY, 0. )
        net.setInitParam( FB_SCALE, 0. )
        net.setReservoirAct( ACT_TANH )
        net.setOutputAct( ACT_LINEAR )
        net.setSimAlgorithm( SIM_SQUARE )
        net.setTrainAlgorithm( TRAIN_PI )
        trainnoise = 0.0001
        testnoise = 0.
        net.init()
        return net, trainnoise, testnoise

def narma10(x):
        """ tenth-order NARMA system applied to the input signal
        """
        size = len(x)
        y = zeros(x.shape)
        for n in range(10,size):
                y[n] = 0.3*y[n-1] + 0.05*y[n-1]*(y[n-1]+y[n-2]+y[n-3] \
                       +y[n-4]+y[n-5]+y[n-6]+y[n-7]+y[n-8]+y[n-9]+y[n-10]) \
                       + 1.5*x[n-10]*x[n-1] + 0.1
        return y

def get_esn_data(x,y,trainsize,testsize,inscale=1.,inshift=0.):
        """ returns trainin, trainout, testin, testout
        """
        skip = 50 # NARMA initialization
        trainin = x[skip:skip+trainsize]
        trainin.shape = 1,-1
        trainout = y[skip:skip+trainsize]
        trainout.shape = 1,-1
        testin = x[skip+trainsize:skip+trainsize+testsize]
        testin.shape = 1,-1
        testout = y[skip+trainsize:skip+trainsize+testsize]
        testout.shape = 1,-1
        # for 2. input
        trainin1 = ones((2,trainin.shape[1]))
        testin1 = ones((2,testin.shape[1]))
        trainin1[0] = trainin
        testin1[0] = testin
        return trainin1, trainout, testin1, testout

def plot(esnout,testout):
        """ plotting """
        from matplotlib import font_manager
        P.subplot(121)
        P.title('NARMA System Identification')
        P.plot(testout,'b')
        P.plot(esnout,'r')
        P.subplot(122)
        P.title('zoomed to first 100 samples')
        P.plot(testout[:100],'b')
        P.plot(esnout[:100],'r')
        P.legend( ('target', 'ESN output'), loc="upper right", \
            prop=font_manager.FontProperties(size='smaller') )
        P.show()



###########################################################
# MAIN

trainsize = 3200
washout = 200
testsize = 2200

# choose ESN: compare performance between square and STD-ESN
#net, trainnoise, testnoise = setup_STD_ESN()
net, trainnoise, testnoise = setup_SQUARE_ESN()

# generate train/test signals
size = trainsize+testsize
x = random.rand(size)*0.5
y = narma10(x)

# create in/outs with bias input
trainin, trainout, testin, testout = get_esn_data(x,y,trainsize,testsize)

# ESN training
net.setNoise(trainnoise)
print "training ..."
net.train(trainin,trainout,washout)
print "output weights:"
print "\tmean: ", net.getWout().mean(), "\tmax: ", abs(net.getWout()).max()

# ESN simulation
esnout = empty(testout.shape)
net.setNoise(testnoise)
net.simulate(testin,esnout)
nrmse = errorcalc.nrmse( esnout, testout, washout )
print "\nNRMSE: ", nrmse
print "\nNMSE: ", errorcalc.nmse( esnout, testout, washout )
plot(esnout,testout)

Generated on Wed Mar 12 21:16:05 2008 for aureservoir by  doxygen 1.5.3