from numpy import *
import pylab as P
import sys, errorcalc
sys.path.append("../")
from aureservoir import *
def setup_SQUARE_ESN():
""" ESN with squared state updates
"""
net = DoubleESN()
net.setSize(100)
net.setInputs(2)
net.setOutputs(1)
net.setInitParam( CONNECTIVITY, 0.05 )
net.setInitParam( ALPHA, 0.8 )
net.setInitParam( IN_CONNECTIVITY, 1. )
net.setInitParam( IN_SCALE, 0.1 )
net.setInitParam( FB_CONNECTIVITY, 0. )
net.setInitParam( FB_SCALE, 0. )
net.setReservoirAct( ACT_TANH )
net.setOutputAct( ACT_LINEAR )
net.setSimAlgorithm( SIM_SQUARE )
net.setTrainAlgorithm( TRAIN_PI )
net.trainnoise = 0.0001
net.testnoise = 0.
net.ds = 0
net.init()
return net
def setup_DS_ESN():
""" ESN with squared state updates and a delay&sum readout
"""
net = DoubleESN()
net.setSize(100)
net.setInputs(2)
net.setOutputs(1)
net.setInitParam( CONNECTIVITY, 0.05 )
net.setInitParam( ALPHA, 0.8 )
net.setInitParam( IN_CONNECTIVITY, 1. )
net.setInitParam( IN_SCALE, 0.1 )
net.setInitParam( FB_CONNECTIVITY, 0. )
net.setInitParam( FB_SCALE, 0. )
net.setReservoirAct( ACT_TANH )
net.setOutputAct( ACT_LINEAR )
net.setSimAlgorithm( SIM_SQUARE )
net.setTrainAlgorithm( TRAIN_DS_PI )
net.setInitParam(DS_USE_GCC)
net.setInitParam(DS_MAXDELAY, 3000)
net.trainnoise = 0.0001
net.testnoise = 0.
net.ds = 1
net.init()
return net
def narma10sparse(x,d=10):
""" same tenth-order NARMA system with sparse
x and y, d is the stepsize
"""
size = len(x)
y = zeros(x.shape)
for n in range(10*d,size):
y[n] = 0.3*y[n-1*d] + 0.05*y[n-1*d]*(y[n-1*d]+y[n-2*d]+y[n-3*d] \
+y[n-4*d]+y[n-5*d]+y[n-6*d]+y[n-7*d]+y[n-8*d]+y[n-9*d] \
+y[n-10*d]) + 1.5*x[n-10*d]*x[n-1*d] + 0.1
return y
def sparseSystem2(x,step=10):
""" system suggested from stefan
"""
size = len(x)
y = zeros(x.shape)
for n in range(2*step+2,size):
y[n] = (x[n]+x[n-1]+x[n-2]+x[n-3]) * \
(x[n-1*step]+x[n-1*step-1]+x[n-1*step-2]) * \
(x[n-2*step]+x[n-2*step-1]+x[n-2*step-2])
return y
def get_esn_data(x,y,trainsize,testsize):
""" returns trainin, trainout, testin, testout
"""
skip = 500
trainin = x[skip:skip+trainsize]
trainin.shape = 1,-1
trainout = y[skip:skip+trainsize]
trainout.shape = 1,-1
testin = x[skip+trainsize:skip+trainsize+testsize]
testin.shape = 1,-1
testout = y[skip+trainsize:skip+trainsize+testsize]
testout.shape = 1,-1
trainin1 = ones((2,trainin.shape[1]))
testin1 = ones((2,testin.shape[1]))
trainin1[0] = trainin
testin1[0] = testin
return trainin1, trainout, testin1, testout
def plot(esnout,testout):
""" plotting """
from matplotlib import font_manager
P.subplot(121)
P.title('Sparse Nonlinear System Identification')
P.plot(testout,'b')
P.plot(esnout,'r')
P.subplot(122)
P.title('zoomed to first 100 samples')
P.plot(testout[:100],'b')
P.plot(esnout[:100],'r')
P.legend( ('target', 'ESN output'), loc="upper right", \
prop=font_manager.FontProperties(size='smaller') )
P.show()
trainsize = 3200
washout = 400
testsize = 2200
net = setup_DS_ESN()
size = trainsize+testsize+500
x = random.rand(size)*0.5
y = sparseSystem2(x,step=50)
trainin, trainout, testin, testout = get_esn_data(x,y,trainsize,testsize)
net.setNoise(net.trainnoise)
net.train(trainin,trainout,washout)
if (net.ds == 1):
delays = zeros((1,102))
net.getDelays(delays)
print "trained delays:"
print delays
print "output weights:"
print "\tmean: ", net.getWout().mean(), "\tmax: ", abs(net.getWout()).max()
esnout = empty(testout.shape)
net.setNoise(net.testnoise)
net.simulate(testin,esnout)
nrmse = errorcalc.nrmse( esnout, testout, washout )
print "\nNRMSE: ", nrmse
print "\nNMSE: ", errorcalc.nmse( esnout, testout, washout )
plot(esnout,testout)